Solving differential equations for 3-loop diagrams: relation to hyperbolic geometry and knot theory

نویسنده

  • D. J. Broadhurst
چکیده

In hep-th/9805025, a result for the symmetric 3-loop massive tetrahedron in 3 dimensions was found, using the lattice algorithm PSLQ. Here we give a more general formula, involving 3 distinct masses. A proof is devised, though it cannot be accounted as a derivation; rather it certifies that an Ansatz found by PSLQ satisfies a more easily derived pair of partial differential equations. The result is similar to Schläfli’s formula for the volume of a bi-rectangular hyperbolic tetrahedron, revealing a novel connection between 3-loop diagrams and 1-loop boxes. We show that each reduces to a common basis: volumes of ideal tetrahedra, corresponding to 1-loop massless triangle diagrams. Ideal tetrahedra are also obtained when evaluating the volume complementary to a hyperbolic knot. In the case that the knot is positive, and hence implicated in field theory, ease of ideal reduction correlates with likely appearance in counterterms. Volumes of knots relevant to the number content of multi-loop diagrams are evaluated; as the loop number goes to infinity, we obtain the hyperbolic volume of a simple 1-loop box. ) [email protected]; http://physics.open.ac.uk/ d̃broadhu

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY

The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...

متن کامل

Knot polynomials via one parameter knot theory

We construct new knot polynomials. Let V be the standard solid torus in 3-space and let pr be its standard projection onto an annulus. LetM be the space of all smooth oriented knots in V such that the restriction of pr is an immersion (e.g. regular diagrams of a classical knot in the complement of its meridian). There is a canonical one dimensional homology class for each connected component of...

متن کامل

Deflection of a hyperbolic shear deformable microbeam under a concentrated load

Deflection analysis of a simply supported microbeam subjected to a concentrated load at the middle is investigated on the basis of a shear deformable beam theory and non-classical theory. Effects of shear deformation and small size are taken into consideration by hyperbolic shear deformable beam theory and modified strain gradient theory, respectively. The governing differential equations and c...

متن کامل

Generalized volume and geometric structure of 3-manifolds

For several hyperbolic knots, a relation between certain quantum invariants and the volume of their complements are discovered by R. Kashaev in [2]. In [6], it is shown that Kashaev’s invariants are specializations of the colored Jones polynomials. Kashaev used the saddle point method to obtain certain limit of invariants, and Y. Yokota proved that the equations to determine the saddle points c...

متن کامل

Numerical studies of non-local hyperbolic partial differential equations using collocation methods

The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998